

Eng. Proc. 2025, x, x https://doi.org/10.3390/xxxxx

Proceeding Paper 1

Efficient Algorithm for Mining Top-k High On-shelf Utility 2

Itemsets with Positive/Negative Profits of Local/Global Mini- 3

mum Count † 4

Ye-In Chang 1, *, Po-Chun Chuang 1, Yu-Hao Liao 1 , Po-Yu Hu 1 and Ting-Wei Chen 1 5

1 dept. of Computer Science and Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan; 6
changyi@mail.cse.nsysu.edu.tw, zhungboqun@gmail.com, karta88821@gmail.com, 7
HuPY@db.cse.nsysu.edu.tw, ChenTW@db.cse.nsysu.edu.tw 8

* Correspondence: changyi@cse.nsysu.edu.tw 9
† Presented at the 2025 IEEE 5th International Conference on Electronic Communications, Internet of Things 10

and Big Data, New Taipei, Taiwan, 25–27 April 2025. 11

Abstract: High utility itemset mining (HUIM) utilizes the threshold value to extract HUI 12
from the transactional database. However, it is difficult to define an optimal threshold 13
value, since it depends on the domain knowledge of the application. Therefore, Top-k 14
HUIM is used to solve the problem of setting a threshold. A user can define a k value, 15
which represents the number of HUIs. Moreover, there exist itemsets occurring at a spe- 16
cific time interval, which can become HUI. Since the traditional HUIM algorithm does not 17
consider the transaction with the time interval, the HUIM algorithm cannot be used di- 18
rectly. Therefore, high-on-shelf utility itemset mining (HOUIM) is used to address the 19
above problem in this study. The proportion of the utility value of the item in all of the 20
time intervals with the itemset is used for determining whether the itemset is HOUI or 21
not. In the Top-k HOUIM, the KOSHU algorithm is used based on the data structure, ig- 22
noring the item with the negative profit in overestimating the utility of the itemset. The 23
KOSHU algorithm needs less processing time. However, the KOSHU algorithm has to 24
scan the database twice and sort the database once. Therefore, we developed an efficient 25
algorithm based on the TIPN Table to mine Top-k HOUIs. The developed data structures 26
include TIPN and MINC tables, IO Bitmap, and TIUL. In the TIPN table, we recorded 27
positive items, positive utilities, negative items, and negative counts. The MINC table is 28
used for storing the local/global counts of all of the items with negative profits. In the 29
algorithm, we scanned the database only once. The developed algorithm is more efficient 30
than the KOSHU algorithm. 31

Keywords: data mining; high on-shelf utility itemset mining; negative unit profits; static 32
transac-tional database; top-k high utility itemset mining 33
 34

1. Introduction 35

In the frequent weighted itemsets mining (FWIM) [10], the frequency and the weight 36
of the item are considered. The high utility itemsets mining (HUIM) [7,8] has become pop- 37
ular recently. If the utility value of itemset X is not less than the minimum threshold value, 38
then itemset X is a HUI. However, it is difficult to define an appropriate threshold value. 39
To address the issue, the Top-k HUIM [8] has been proposed. The default threshold value 40

Academic Editor: Firstname Last-

name

Published: date

Citation: To be added by editorial

staff during production.

Copyright: © 2025 by the authors.

Submitted for possible open access

publication under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/license

s/by/4.0/).

Eng. Proc. 2025, x, x FOR PEER REVIEW 2 of 10

is set to 0, and then several threshold values are used, such as remaining item utility (RIU) 1
and remaining utility constraint (RUC). 2

The traditional HUIM algorithm considers all of the transactions in the database on- 3
shelf. The high on-shelf utility itemset mining (HOUIM) [3] has been proposed by consid- 4
ering the on-shelf time interval of the transaction to find itemsets with high utility in the 5
specific time interval. All of the transactions are added with another field as a time interval, 6
which indicates that the transaction is on-shelf as shown in Table 1. The related profit of 7
items a, b, c, and d is 2, 4, 1, and 3, respectively. 8

Table 1. Database D1 with on-shelf time intervals 9

TID Transaction Interval
T1 (a, 1)(b, 2)(c, 1) 1
T2 (c, 3)(d, 2) 1
T3 (b, 2)(c, 4)(d, 3) 2
T4 (b, 6)(d, 2) 2

The total utility of a time interval h is denoted as TIU (h), which is calculated as the 10
sum of the utility of transactions in which the time interval is h. The utility of itemsets in 11
a certain time interval is equal to the summation of the utility of all itemsets in a certain 12
interval. The result of the total utility of time interval 1 is 20 and that of time interval 2 is 13
51. The relative utility of the given itemset X is used for determining whether the itemset 14
is a HOUI. 15

Singh et al. proposed the top-k high utility itemset mining (TKEH) algorithm [8] for 16
mining the Top-k HUIs. Srikumar proposed the THUI algorithm [6] to mine the Top-k 17
HUIs. Ashraf et al. proposed the TKN algorithm [2]. Later, HOUIM [4] is considered as 18
the time interval. The redefined transaction-weighted utility (RTWU) [9] is a utility over- 19
estimated value that ignores items with negative profits. The KOSHU algorithm [4] is con- 20
structed based on the utility list structure to mine Top-k HOUIs. The KOSHU algorithm 21
reduces the number of candidates during the mining process. However, the KOSHU al- 22
gorithm needs to scan the database twice. 23

To reduce the number of database scans in the static database, we developed an effi- 24
cient algorithm called TIPN-table-based to extract Top-k HOUIs. We applied the local and 25
global concepts to deal with items with a negative profit. We also introduced the IO Bit- 26
map to record the occurrence of all of the items according to different time intervals. We 27
proposed two pruning strategies based on the research results. The developed TIPN-Ta- 28
ble-based algorithm is more efficient than the KOSHU algorithm. 29

2. Koshu Algorithm 30

The KOSHU algorithm [4] mines Top-k HOUIs. The KOSHU algorithm calculates 31
RTWU values for all of the items and sorts them in the defending order. Then, they apply 32
two threshold-increasing strategies. Moreover, they used a pruning strategy to effectively 33
diminish the processing time. However, the KOSHU algorithm requires iterating the da- 34
tabase twice to mine the Top-k HOUIs. Moreover, the utility list for each item was con- 35
structed by the KOSHU algorithm. 36

3. TIPN-table-based algorithm 37

We used an example database to illustrate the developed algorithm. We described 38
variables, four data structures, three pruning strategies, two strategies for increasing the 39
threshold value. 40

Eng. Proc. 2025, x, x FOR PEER REVIEW 3 of 10

3.1. Example Database 1

We used an example database D2 to illustrate the algorithm (Table 2). Each item in 2
the set I has its profit = [a:5, b:-2, c:3, d:-1, e:3, f :4]. Each transaction Tj in database D2 3
contains a unique identifier TID. Moreover, in each transaction Tj, we use a subset of items 4
I with the related count and a related time interval. 5

Table 2. Example database D2 with on-shelf time intervals 6

TID Transaction Interval
T1 (b, 3)(d, 2)(f, 4) 1
T2 (b, 2)(c, 7)(d, 4)(e, 5) 1
T3 (a, 6)(c, 3)(d, 4) 2
T4 (a, 4)(d, 2)(e, 2) 2
T5 (b, 3)(c, 8)(d, 5)(e, 4) 3
T6 (b, 1)(c, 6)(d, 3) 3

3.2. Figures, Tables, and Schemes 7
P_V al(i) and Q_V al(i) represent the profit and the quantity value of item i, respec- 8

tively. Moreover, UT (i, Tj) is defined as the Utility of item i in Transaction Tj, which is 9
calculated as the product of P_V al(i) and Q_V al(i). UT (X, Tj) represents the utility of 10
itemset X in transaction Tj, which is calculated as the cumulative utility. TotalU (T) rep- 11
resents the total utility of transaction T, which is the sum of the utility of each item in 12
transaction T. The total utility of each transaction in database D2 is 8, 23, 35, 22, 21, and 13, 13
for transactions T1, T2, T3, T4, T5, and T6, respectively. Each product is on the shelf at dif- 14
ferent time intervals. We defined the list of whole time intervals (TIList) as in database D2. 15
TotalTI(h) represents the utility of time interval h. The total utilities of all of the time in- 16
tervals in database D2 are [a, 59], [b, 83], [c, 106], [d, 142], [e, 77], and [f, 14]. The utility of 17
itemset X in time interval h is denoted as UTI(X, h). The relative utility of the itemset is 18
used for determining whether the itemset is an HOUI or not. RelativeU (X) represents the 19
Relative Utility of the itemset, which is computed by the utility of itemset X divided by 20
the total utility of each time interval that contains itemset X in the database. 21

3.3. Data Structures 22

In the proposed data structure, we stored the information of each transaction in the 23
TIPN table. Negative items are ignored in the overestimated value of the itemset. We de- 24
signed the NIMC table to keep the local minimum of each negative item according to dif- 25
ferent time intervals. Obviously, in mining top-k high on-shelf utility itemset, the thresh- 26
old is initially set to 0 and it is increased during the mining process. We used the bitmap 27
to store the status of the occurrence of each item according to different time intervals. We 28
used the TIList to achieve the goal. The TIPN table has six columns as shown in Table 3. 29
Each row in TIPN_Table contains a set of transactions at that time interval, and each trans- 30
action is classified as positive items and negative items. Furthermore, the utility of each 31
positive item in the transaction is stored. Here, we stored the count of each negative item 32
to construct the NIMC table. 33

Table 3. TIPN table of database D 34

 35

Eng. Proc. 2025, x, x FOR PEER REVIEW 4 of 10

Time Interval TID Positive Items Positive Utility Negaitve Items Negative Count

1

T1 f f: 16 b, d b: 3, d: 2

T2 c, e c: 21, e: 10 b, d b: 2, d: 4

2

T3 a, c a: 30, c: 9 d d: 4

T4 a, e a: 20, e: 4 d d: 2

3

T5 c, e c: 24, e: 8 b, d b: 3, d: 5

T6 c c: 18 b, d b: 1, d: 3

 1
We constructed the data structure of the NIMC table to decrease the overestimated 2

utility. Moreover, we used two counts, global noise correction (GNC) and local noise cor- 3
rection (LNC), to record the minimum count of each negative item (b and d). The Global 4
minimum count (GMC) of each negative item is also recorded. For each negative item, we 5
calculated the minimum count of each time interval and stored it in the GMC column. 6
When count = 0, we skipped it. For example, for negative item b, we recorded 2, 0, 1, for 7
time intervals 1, 2, 3, respectively, and recorded GMC = 1. IO_Bitmap was used for storing 8
the occurrence of each item in the database and it is constructed during the initial pass of 9
the database. For example, for item c in time interval 1, the related bits are 01. 10

TIList was used to discover HOUIs efficiently based on the utility list. We defined a 11
list of itemset X as 𝑇𝐼𝑈𝐿(𝑋) = {(𝑇𝐼, {(𝑇𝐼𝐷, 𝑃_𝑈𝑡𝑖𝑙, 𝑁_𝑈𝑡𝑖𝑙, 𝑁𝐺𝐶_𝑈𝑡𝑖𝑙, 𝑅_𝑈𝑡𝑖𝑙)})}, where 12
Tl is the time interval, P_Util is the positive utility of itemset X in transaction TrID. N_Util 13
is the negative utility of itemset X in transaction TID and NGC_Util is the negative utility 14
of itemset X that considers GMC in transaction TT ID. UTGC(I,Tj) = TU (i, Tj), if P_V al(i) 15
> 0. Moreover, UTGC(i, Tj) = GC(i) × P_Val(i), if P_V al(i) < 0. Furthermore, the Remaining 16
Utility (R_Util) of itemset X in transaction TT ID is defined as follows. 17

𝑅!"#$%&,(!) =6 𝑈𝑇𝐿𝐶7𝑖, 𝑇*8
#∈(!∧#≻.∀.∈&

 (1)

where 𝑈𝑇𝐺𝐶7𝑖, 𝑇*8 adopts the GMC of each negative item according to the NIMC table. 18
Then, the utility of item i is calculated as UTLC(b, 𝑇0) = GC(b) × P Val(i) = 2 × (-4) = −8. 19

The TIList of itemset X stores the positive utility and negative utility of itemset X. 20
Moreover, The list stores the negative utility by considering the GMC of each period. Table 21
4 shows the TIList of item e. In the mining process, the algorithm constructs a list for each 22
single item in the database. Then, the list is used for extracting HOUIs in the mining 23
procedure. To calculate the utility of the itemset and the overestimated utility of the item, 24
we defined variables as follows. (1) sumP_Util(X) means the sum of Positive Utilities 25
P_Util(X) of TIUL of X; (2) sumN_Util(X) means the sum of Negative Utilities N_Util(X) 26
of TIUL of X.; (3) sumNLC_Util(X) means the sum of Negative Utilities with Local 27
minimum Count NNGC_Util of TIUL of X.; (4) sumR_Util(X) means the sum of 28
Remaining Utilities R_Util of TIUL of X.; (5) sumN_Util(X) means the accumulation of 29
Positive Utilities and Negative Utilities of TIUL of X. 30

Table 4. TIList of item e. 31

Eng. Proc. 2025, x, x FOR PEER REVIEW 5 of 10

Itemset Time Interval TID P_Util N_Util NLC_Util R_Util

e

1 2 10 0 0 15

2 4 4 0 0 -2

3 5 8 0 0 19

 1

3.3. Pruning Strategies 2

We introduced three pruning strategies. In the first pruning strategy called TWUGC, 3
which is motivated by the RTWU [5], we define the TWUGC as follows. 4

𝑇𝑊𝑈𝐺𝐶(𝑋) =6 𝑇𝑜𝑡𝑎𝑙𝑈_𝐺𝐶(𝑇*)
&∈(!∧(!∈1

 (2)

𝑇𝑜𝑡𝑎𝑙𝑈_𝐺𝐶7𝑇*8 =6 𝑈𝑇𝐺𝐶(𝑖, 𝑇*).
#∈(!∧(!∈1

 (3)

𝑈𝑇𝐺𝐶7𝑖, 𝑇*8 = =
𝑇𝑈(𝑖, 𝑇*),				𝑖𝑓	𝑃_𝑉𝑎𝑙(𝑖) > 0.

𝐺𝐶(𝑖) × 𝑃_𝑉𝑎𝑙(𝑖),			𝑖𝑓	𝑃_𝑉𝑎𝑙(𝑖) < 0. (4)

The TWUGC of itemset X is the sum of 𝑇𝑜𝑡𝑎𝑙𝑈_𝐺𝐶7𝑇*8 in transactions, where item- 5
set X appears. 𝑇𝑜𝑡𝑎𝑙𝑈_𝐺𝐶7𝑇*8 is calculated as the sum of utilities of items in transactions 6
𝑇*. If the item is negative, the utility of the item is calculated as the product of GMC of the 7
item and the profit of the item. For the second pruning strategy, the RLC pruning strategy 8
prunes hopeless candidates. We utilized the utility list to calculate the overestimated util- 9
ity value of the relative utility of the itemset. For the third pruning strategy, the TIO prun- 10
ing strategy prunes the subtrees of the set-enumeration tree which do not appear in the 11
database during the mining process. We introduced the IO Bitmap which recorded the 12
occurrence statuses of all of the items. 13

3.4. Threshold Increased Strategies 14

We introduced two strategies with increased thresholds. The RPRU_Size1 strategy 15
was used to calculate the relative utility for all of the positive items in database D and 16
insert those positive items into the RPRU_Size1_List. Then, the RPRU_Size1 strategy sorts 17
the RPRU_Size1 list according to the descending order of relative utilities and it increases 18
the threshold value to the k-highest relative utility in the RPRU_Size1 list. The RRU_Size2 19
strategy was used to calculate the relative utilities for all of the items in database D and 20
insert them into RRU_Size2 list. The RRU_Size2 strategy sorts the RRU_All_List according 21
to the descending order of relative utilities and it increases the threshold value to the k- 22
highest relative utility in the RRU_All_List. 23
3.5. Mining Process 24

The mining process of the developed algorithm is as follows. 25

3.5.1. Preprocessing Step 26

In this step, we constructed TIList, TotalTI table, TIPN table, IO table, and NIMC table. 27
In addition, LMC and GCM were added. After scanning the database once, the algorithm 28
performed the RPRU-Size1 strategy to increase the value of ThreVal. To obtain the real 29
relative utility of positive item a, we calculated the utility of positive item a by using the 30
TIPN table. The results showed that UD(a) = 115 TI_Occu_List(a) = {1, 2, 3}, and 31
TI_Occu_Total(a) = 133. The real relative utility of item a is calculated as UD(a) / 32
TI_Occu_Total(a) = 0.86. The result of RPRU_Size1 list which stores real relative utilities 33
of positive items is [Each positive item, RPRU] = [[a, 0.86], [c, 0.54], [e, 0.17], [f, 0.09]]. If 34

Eng. Proc. 2025, x, x FOR PEER REVIEW 6 of 10

the size of RPRU Size1 list was not less than k, we increased the threshold value to the k- 1
highest value in RPRU_Size1_List. On the other hand, TK_List stored the k-highest HOUIs 2
by the descending order of the relative utility. Therefore, TK_List was updated by 3
RPRU_Size1_List. 4

Then, we calculated the TWUGC value of all of the items in the database to overesti- 5
mate the relative utility. We defined a total order (TWUGC_Order) for finding the Top-k 6
HOUIs efficiently. TWUGC_Order has three ordering rules. First, positive items are 7
sorted by the descending order of TWUGC. Second, negative items are sorted by the de- 8
scending order of TWUGC. Third, negative items are sorted in positive items. 9
TWUGC_Order of database D2 is [f, a, e, c, b, d]. Table 5 shows the result of the sorted 10
TIPN table. 11

After the TIPN table was sorted by the TWUGC_Order, the developed algorithm cre- 12
ated a TIList for all of the single items in the database. The TIList of each item was used 13
for discovering itemsets with a large size by using the itemset expansion method. 14

Table 5. Sorting TIPN table in TWUGC 15

Time Interval TID Positive Items Positive Utility Negaitve Items Negative Count

1

T1 f f: 16 b, d b: 3, d: 2

T2 e, c c: 21, e: 10 b, d b: 2, d: 4

2

T3 a, c a: 30, c: 9 d d: 4

T4 a, e a: 20, e: 4 d d: 2

3

T5 e, c c: 24, e: 8 b, d b: 3, d: 5

T6 c c: 18 b, d b: 1, d: 3

 16

To increase the minimum threshold value for finding Top-k HOUIs, the algorithm 17
applied another threshold-increased strategy called the RRU-Size2 strategy. In the RRU- 18
Size2 strategy, the real relative utility is calculated for each size 2 itemsets and stored in 19
the RRU_Size2 list. Moreover, the algorithm uses the Time Interval_Utility list and IO_Ta- 20
ble to calculate the real relative utility of the size 2 itemset efficiently. For obtaining the 21
real relative utility of itemset x∪y, we need to calculate the utility of itemset x ∪ y and the 22
total utility of each time Interval which contains the occurrence of itemset x ∪ y. The real 23
relative utility of x ∪ y can be calculated as Relative(x ∪ y) = UD(x ∪ y)/TI_Occu_Total(x ∪ 24
y). The TK list is updated by the RRU_ALL list. 25
3.5.2. Mining Step 26

In the mining step, the algorithm applies the pattern growth method to discover Top- 27
k HOUIs. At the beginning of the mining process, the algorithm traverses through all of 28
the TIULs of items from the root node of the set- enumeration tree, i.e. empty itemset. In 29
each iteration, the original itemset P is appended with the current item x to obtain a new 30
itemset NewP = P ∪ {x}. Then, the algorithm checks whether the new itemset NewP is an 31

Eng. Proc. 2025, x, x FOR PEER REVIEW 7 of 10

HOUI or not. If the relative utility of the itemset is not less than the threshold value 1
ThreVal, the itemset is a HOUI. If the relative utility of the new itemset NewP is greater 2
than the k-highest relative utility in the TK list, the algorithm removes the k-highest item- 3
set and inserts the new itemset NewP into the TK list. Moreover, the threshold value 4
ThreV al is updated as the k-highest relative utility in the TK list. To calculate the relative 5
utility of new itemset NewP, we calculated the utility of new itemset NewP in the database 6
and the total utility of each time interval that contains the occurrence of the new itemset 7
in the database TI Occu_Total. For calculating the utility of new itemset NewP, the algo- 8
rithm uses TIUL of itemset NewP. The sum of positive utilities and negative utilities of 9
itemset NewP contains sumPN_Util(NewP), which is the accumulation of positive utili- 10
ties sump_Util(NewP), and the accumulation of negative utilities sumN_Util(NewP). 11

If sumPN_Util(NewP) is less than 0, the algorithm skips it directly. For calculating 12
TI_Occu_Total, the algorithm performs the AND operation of all of the time intervals of 13
itemset NewP in IO_Bitmap. If the related utility of the new itemset NewP is not less than 14
the threshold value ThreV al, the new itemset NewP is a HOUI. The objective is to discover 15
the Top-k HOUIs within the database. Moreover, the algorithm creates a list called TK list 16
to store the Top-k HOUIs during the mining process. The TK list is a list that dynamically 17
sorts all of the HOUIs in the TK list according to the descending order of relative utilities. 18
If the size of the TK list is less than the user-defined parameter k, the algorithm inserts the 19
new itemset NewP into the TK list directly. If the size of the TK list is equal to the user- 20
defined parameter k, the algorithm checks whether the relative utility of new itemset 21
NewP is greater than the k- highest relative utility in the TK list or not. If the result is true, 22
the new itemset NewP is inserted into the TK list. After the above checking, whether the 23
new itemset NewP is HOUI or not, the algorithm applies the TWUGC pruning strategy 24
to prune unpromising itemsets. 25

4. Performace Evaluation 26

The TIPN-table-based algorithm and the KOSHU algorithm were evaluated for their 27
performance [4]. For evaluation, we utilized two databases, real and synthetic databases. 28

4.1. Performance Model 29

The real database is the sparse database downloaded from the SPMF library [5]. The 30
retail database has a density of lower than 1% as a sparse database. The value of the time 31
interval is 5, which is equal to the consideration of the KOSHU algorithm [4]. We set k to 32
the range between 50 and 150. The real database has 88162 transactions (containing 16470 33
items) with density=0.06. For the synthetic database, we utilized four parameters T, I, MI, 34
and NP to experiment with the TIPN-table-based algorithm and KOSHU algorithm, 35
where T represents the total amount of transactions in the database, I represents the total 36
amount of distinct items of the database. MI represents the maximum amount of distinct 37
items of a single transaction and NP represents the percentage of counts of items with 38
negative profits. For example, T_10000_I4000_MI10_NP_80 is a synthetic database with 39
10000 transactions, 4000 distinct items, up to 10 distinct items in a single transaction, and 40
80% of items with negative profits. These synthetic databases are obtained from the IBM 41
Almaden Quest research group [1]. 42

4.2. Experiment Results 43
We compared the performance of the TIPN-table-based algorithm and the KOSHU 44

algorithm [4]. The KOSHU algorithm produced the EMPRS data structure during the pre- 45
processing step, which was time-consuming. Moreover, the number of candidates for the 46
TIPN-table-based algorithm is smaller than that of the KOSHU algorithm. There are two 47

Eng. Proc. 2025, x, x FOR PEER REVIEW 8 of 10

reasons why the algorithm could generate less number of candidates than the KOSHU 1
algorithm. First, the TWUGC pruning strategy considered the GMC of all of the items 2
with negative profits. Second, the RLC pruning strategy utilizes the LMC of all of the items 3
with negative profits at each time interval. Therefore, the remaining utility of the RLC 4
pruning strategy is tighter than that of the KOSHU algorithm. Moreover, the number of 5
candidates was pruned by the algorithm more than that of the KOSHU algorithm during 6
the mining process. 7

Figure 1 shows the comparisons of the performance between these two algorithms 8
by using the real database retail. As the value of k is increased, the performance measures 9
including the processing time and the number of candidates of our proposed algorithm 10
are better than those of the KOSHU algorithm. Moreover, the reasons for such results are 11
the same as those reasons described before. For the synthetic databases 12
T_10000_I100_MI10_NP_80 (the dense database), Figures 1(c) and (d) show the compari- 13
sons of the two concerned algorithms. The result are similar to the comparison between 14
the two algorithms. 15

(a) (b)

(c) (d)

Figure 1. A comparison under the change of k. (a) The processing time by using the real database 16
retail. (b) The total amount of candidate by using the real database retail. (c) The processing time by 17
using the synthetic database T10000_I100_MI10_NP80by. (d) The total amount of candidate using 18
the synthetic database. 19

5. Conclusion 20

In this study, we developed the TIPN-table-based algorithm to mine top-k high on- 21
shelf utility itemsets efficiently. The TIPN-table-based algorithm only scans the database 22
once and sorts the database once. Moreover, we proposed the global and local concepts to 23
make the tight upper bound. We utilized a bit map strategy to decrease the processing 24
time. The experiment results showed that the TIPN-Table-Based algorithm better per- 25
formed than the KOSHU algorithm. 26

References 27

Eng. Proc. 2025, x, x FOR PEER REVIEW 9 of 10

1. IBM. IBM Quest Synthetic Data Generation Code. Available online: http://www.almaden.ibm.com/cs/quest/syndata.html (ac- 1
cessed on 5 July 2025). 2

2. Ashraf, M.; Abdelkader, T.; Rady, S.; Gharib, T.F. TKN: An efficient approach for discovering top-k high utility itemsets with 3
positive or negative profits. Inf. Sci. 2022, 587, 654–678. 4

3. Chen, J.; Guo, X.; Gan, W.; Chen, C.-M.; Ding, W.; Chen, G. On-shelf utility mining from transaction database. Eng. Appl. Artif. 5
Intell. 2022, 107, 1–12. 6

4. Dam, T.-L.; Li, K.; Fournier-Viger, P.; Duong, Q.-H. An efficient algorithm for mining top-k on-shelf high utility itemsets. Knowl. 7
Inf. Syst. 2017, 52, 621–655. 8

5. Fournier-Viger, P.; Lin, C.W.; Gomariz, A.; Gueniche, T.; Soltani, Z.D.A.; Lam, H.T. The SPMF open-source data mining library 9
version 2. In Proceedings of the 19th European Conference on Principles of Data Mining and Knowledge Discovery (PKDD 2016), Part 10
III; Springer: Riva del Garda, Italy, 19–23 September 2016; pp. 36–40. 11

6. Krishnamoorthy, S. Mining top-k high utility itemsets with effective threshold raising strategies. Expert Syst. Appl. 2019, 117, 12
148–165. 13

7. Lee, J.; Yun, U.; Lee, G.; Yoon, E. Efficient incremental high utility pattern mining based on pre-large concept. Eng. Appl. Artif. 14
Intell. 2018, 72, 111–123. 15

8. Singh, K.; Singh, S.S.; Kumar, A.; Biswas, B. TKEH: An efficient algorithm for mining top-k high utility itemsets. Appl. Intell. 16
2018, 49, 1078–1097. 17

9. Singh, K.; Kumar, A.; Singh, S.S.; Shakya, H.K.; Biswas, B. EHNL: An efficient algorithm for mining high utility itemsets with 18
negative utility value and length constraints. Inf. Sci. 2019, 484, 44–70. 19

10. Vo, B.; Bui, H.; Vo, T.; Le, T. Mining top-rank-k frequent weighted itemsets using WN-list structures and an early pruning 20
strategy. Knowl.-Based Syst. 2020, 201–202, 1–12. 21

22

http://www.almaden.ibm.com/cs/quest/syndata.html

Eng. Proc. 2025, x, x FOR PEER REVIEW 10 of 10

11. Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of 1
the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) 2
disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or 3
products referred to in the content. 4

