engineering
proceedings

Proceeding Paper

Efficient Algorithm for Mining Top-k High On-shelf Utility
Itemsets with Positive/Negative Profits of Local/Global Mini-

mum Count?t

Ye-In Chang % *, Po-Chun Chuang?, Yu-Hao Liao !, Po-Yu Hu® and Ting-Wei Chen !

Academic Editor: Firstname Last-

name
Published: date

Citation: To be added by editorial

staff during production.

Copyright: © 2025 by the authors.
Submitted for possible open access
publication under the terms and
conditions of the Creative Commons
Attribution (CC BY) license
(https://creativecommons.org/license

s/by/4.0/).

1 dept. of Computer Science and Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan;

changyi@mail.cse.nsysu.edu.tw, zhungboqun@gmail.com, karta88821@gmail.com,

HuPY@db.cse.nsysu.edu.tw, ChenTW@db.cse.nsysu.edu.tw

Correspondence: changyi@cse.nsysu.edu.tw

t Presented at the 2025 IEEE 5th International Conference on Electronic Communications, Internet of Things
and Big Data, New Taipei, Taiwan, 25-27 April 2025.

Abstract: High utility itemset mining (HUIM) utilizes the threshold value to extract HUI
from the transactional database. However, it is difficult to define an optimal threshold
value, since it depends on the domain knowledge of the application. Therefore, Top-k
HUIM is used to solve the problem of setting a threshold. A user can define a k value,
which represents the number of HUIs. Moreover, there exist itemsets occurring at a spe-
cific time interval, which can become HUI. Since the traditional HUIM algorithm does not
consider the transaction with the time interval, the HUIM algorithm cannot be used di-
rectly. Therefore, high-on-shelf utility itemset mining (HOUIM) is used to address the
above problem in this study. The proportion of the utility value of the item in all of the
time intervals with the itemset is used for determining whether the itemset is HOUI or
not. In the Top-k HOUIM, the KOSHU algorithm is used based on the data structure, ig-
noring the item with the negative profit in overestimating the utility of the itemset. The
KOSHU algorithm needs less processing time. However, the KOSHU algorithm has to
scan the database twice and sort the database once. Therefore, we developed an efficient
algorithm based on the TIPN Table to mine Top-k HOUIs. The developed data structures
include TIPN and MINC tables, IO Bitmap, and TIUL. In the TIPN table, we recorded
positive items, positive utilities, negative items, and negative counts. The MINC table is
used for storing the local/global counts of all of the items with negative profits. In the
algorithm, we scanned the database only once. The developed algorithm is more efficient
than the KOSHU algorithm.

Keywords: data mining; high on-shelf utility itemset mining; negative unit profits; static
transac-tional database; top-k high utility itemset mining

1. Introduction

In the frequent weighted itemsets mining (FWIM) [10], the frequency and the weight
of the item are considered. The high utility itemsets mining (HUIM) [7,8] has become pop-
ular recently. If the utility value of itemset X is not less than the minimum threshold value,
then itemset X is a HUL However, it is difficult to define an appropriate threshold value.
To address the issue, the Top-k HUIM [8] has been proposed. The default threshold value

Eng. Proc. 2025, x, x

https://doi.org/10.3390/xxxxx

N

= = 0 0 N

32
33
34

35

36
37
38
39
40



Eng. Proc. 2025, x, x FOR PEER REVIEW 2 of 10

is set to 0, and then several threshold values are used, such as remaining item utility (RIU)
and remaining utility constraint (RUC).

The traditional HUIM algorithm considers all of the transactions in the database on-
shelf. The high on-shelf utility itemset mining (HOUIM) [3] has been proposed by consid-
ering the on-shelf time interval of the transaction to find itemsets with high utility in the
specific time interval. All of the transactions are added with another field as a time interval,
which indicates that the transaction is on-shelf as shown in Table 1. The related profit of
items a, b, ¢, and d is 2, 4, 1, and 3, respectively.

Table 1. Database D1 with on-shelf time intervals

TID Transaction Interval
T1 (a, 1)(b, 2)(c, 1) 1
T2 (c, 3)(d, 2) 1
Ts (b, 2)(c, 4)(d, 3) 2
T4 (b, 6)(d, 2) 2

The total utility of a time interval h is denoted as TIU (h), which is calculated as the
sum of the utility of transactions in which the time interval is h. The utility of itemsets in
a certain time interval is equal to the summation of the utility of all itemsets in a certain
interval. The result of the total utility of time interval 1 is 20 and that of time interval 2 is
51. The relative utility of the given itemset X is used for determining whether the itemset
isa HOUL

Singh et al. proposed the top-k high utility itemset mining (TKEH) algorithm [8] for
mining the Top-k HUIs. Srikumar proposed the THUI algorithm [6] to mine the Top-k
HUIs. Ashraf et al. proposed the TKN algorithm [2]. Later, HOUIM [4] is considered as
the time interval. The redefined transaction-weighted utility (RTWU) [9] is a utility over-
estimated value that ignores items with negative profits. The KOSHU algorithm [4] is con-
structed based on the utility list structure to mine Top-k HOUIs. The KOSHU algorithm
reduces the number of candidates during the mining process. However, the KOSHU al-
gorithm needs to scan the database twice.

To reduce the number of database scans in the static database, we developed an effi-
cient algorithm called TIPN-table-based to extract Top-k HOUIs. We applied the local and
global concepts to deal with items with a negative profit. We also introduced the IO_Bit-
map to record the occurrence of all of the items according to different time intervals. We
proposed two pruning strategies based on the research results. The developed TIPN-Ta-
ble-based algorithm is more efficient than the KOSHU algorithm.

2. Koshu Algorithm

The KOSHU algorithm [4] mines Top-k HOUIs. The KOSHU algorithm calculates
RTWU values for all of the items and sorts them in the defending order. Then, they apply
two threshold-increasing strategies. Moreover, they used a pruning strategy to effectively
diminish the processing time. However, the KOSHU algorithm requires iterating the da-
tabase twice to mine the Top-k HOUlIs. Moreover, the utility list for each item was con-
structed by the KOSHU algorithm.

3. TIPN-table-based algorithm

We used an example database to illustrate the developed algorithm. We described
variables, four data structures, three pruning strategies, two strategies for increasing the
threshold value.

® NN N O B~ W -

\O

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

30

31
32
33
34
35
36

37

38
39
40



Eng. Proc. 2025, x, x FOR PEER REVIEW 3 of 10

3.1. Example Database

We used an example database D2 to illustrate the algorithm (Table 2). Each item in
the set I has its profit = [a:5, b:-2, c:3, d:-1, e:3, f :4]. Each transaction Tj in database D2
contains a unique identifier TID. Moreover, in each transaction Tj, we use a subset of items
I with the related count and a related time interval.

Table 2. Example database D2with on-shelf time intervals

TID Transaction Interval
T1 (b, 3)(d, 2)(f, 4) 1
T2 (b, 2)(c, 7)(d, 4)(e, 5) 1
Ts (a, 6)(c, 3)(d, 4) 2
T4 (a, 4)(d, 2)(e, 2) 2
Ts (b, 3)(c, 8)(d, 5)(e, 4) 3
Ts (b, 1)(c, 6)(d, 3) 3

3.2. Figures, Tables, and Schemes

P_V al(i) and Q_V al(i) represent the profit and the quantity value of item i, respec-
tively. Moreover, UT (i, Tj) is defined as the Utility of item i in Transaction Tj, which is
calculated as the product of P_V al(i) and Q_V al(i). UT (X, Tj) represents the utility of
itemset X in transaction Tj, which is calculated as the cumulative utility. TotalU (T ) rep-
resents the total utility of transaction T, which is the sum of the utility of each item in
transaction T. The total utility of each transaction in database D2 is 8, 23, 35, 22, 21, and 13,
for transactions T1, Tz, Ts, Ts, Ts, and Ts, respectively. Each product is on the shelf at dif-
ferent time intervals. We defined the list of whole time intervals (TIList) as in database D-.
TotalTI(h) represents the utility of time interval h. The total utilities of all of the time in-
tervals in database D: are [a, 59], [b, 83], [c, 106], [d, 142], [e, 77], and [f, 14]. The utility of
itemset X in time interval h is denoted as UTI(X, h). The relative utility of the itemset is
used for determining whether the itemset is an HOUI or not. RelativeU (X) represents the
Relative Utility of the itemset, which is computed by the utility of itemset X divided by
the total utility of each time interval that contains itemset X in the database.

3.3. Data Structures

In the proposed data structure, we stored the information of each transaction in the
TIPN table. Negative items are ignored in the overestimated value of the itemset. We de-
signed the NIMC table to keep the local minimum of each negative item according to dif-
ferent time intervals. Obviously, in mining top-k high on-shelf utility itemset, the thresh-
old is initially set to 0 and it is increased during the mining process. We used the bitmap
to store the status of the occurrence of each item according to different time intervals. We
used the TIList to achieve the goal. The TIPN table has six columns as shown in Table 3.
Each row in TIPN_Table contains a set of transactions at that time interval, and each trans-
action is classified as positive items and negative items. Furthermore, the utility of each
positive item in the transaction is stored. Here, we stored the count of each negative item
to construct the NIMC table.

Table 3. TIPN table of database D

g = W N

10
11
12
13
14
15
16
17
18
19
20
21

22

23
24
25
26
27
28
29
30
31
32
33

34

35



Eng. Proc. 2025, x, x FOR PEER REVIEW 4 of 10

Time Interval | TID | Positive Items | Positive Utility | Negaitve Items Negative Count

T1 f f: 16 b, d b:3,d:2

1
T2 ce c:21,e:10 b, d b:2,d:4
Ts a,c a:30,¢: 9 d d:4

2
Ta a, e a:20,e:4 d d:2
Ts c e c:24,e:8 b,d b:3,d:5

3
Te C c:. 18 b,d b:1,d:3

We constructed the data structure of the NIMC table to decrease the overestimated
utility. Moreover, we used two counts, global noise correction (GNC) and local noise cor-
rection (LNC), to record the minimum count of each negative item (b and d). The Global
minimum count (GMC) of each negative item is also recorded. For each negative item, we
calculated the minimum count of each time interval and stored it in the GMC column.
When count = 0, we skipped it. For example, for negative item b, we recorded 2, 0, 1, for
time intervals 1, 2, 3, respectively, and recorded GMC = 1. IO_Bitmap was used for storing
the occurrence of each item in the database and it is constructed during the initial pass of
the database. For example, for item c in time interval 1, the related bits are 01.

TIList was used to discover HOUISs efficiently based on the utility list. We defined a
list of itemset X as TIUL(X) = {(TI,{(TID,P_Util, N_Util, NGC_Util, R_Util)})}, where
Tl is the time interval, P_Util is the positive utility of itemset X in transaction TrID. N_Util
is the negative utility of itemset X in transaction TID and NGC_Util is the negative utility
of itemset X that considers GMC in transaction Trio. UTGC(LTj) = TU (i, Tj), if P_V al(i)
> 0. Moreover, UTGC(], Tj) = GC(i) x P_Val(i), if P_V al(i) < 0. Furthermore, the Remaining
Utility (R_Util) of itemset X in transaction Tt is defined as follows.

Rye(xr) = z uTLC(i,T)) 1)
ey [ETjAI>XVXEX

where UTGC(i,T;) adopts the GMC of each negative item according to the NIMC table.
Then, the utility of item iis calculated as UTLC(b, T;) = GC(b) x P_Val(i) = 2 x (-4) =-8.
The TIList of itemset X stores the positive utility and negative utility of itemset X.
Moreover, The list stores the negative utility by considering the GMC of each period. Table
4 shows the TIList of item e. In the mining process, the algorithm constructs a list for each
single item in the database. Then, the list is used for extracting HOUIs in the mining
procedure. To calculate the utility of the itemset and the overestimated utility of the item,
we defined variables as follows. (1) sumP_Util(X) means the sum of Positive Ultilities
P_Util(X) of TIUL of X; (2) sumN_Util(X) means the sum of Negative Utilities N_Util(X)
of TIUL of X.; (3) sumNLC_Util(X) means the sum of Negative Utilities with Local
minimum Count NNGC_Util of TIUL of X.; (4) sumR_Util(X) means the sum of
Remaining Utilities R_Util of TIUL of X.; (5) sumN_Util(X) means the accumulation of
Positive Utilities and Negative Utilities of TIUL of X.
Table 4. TIList of item e.

—_

O 0 N N U s N

e e e e =
N O U ok Nk O

18
19
20
21
22
23
24
25
26
27
28
29
30
31



Eng. Proc. 2025, x, x FOR PEER REVIEW 5 of 10

Itemset Time Interval TID P_Util N_Util NLC_Util R_Util

1 2 10 0 0 15
e 2 4 4 0 0 -2
3 5 8 0 0 19

3.3. Pruning Strategies

We introduced three pruning strategies. In the first pruning strategy called TWUGC,
which is motivated by the RTWU [5], we define the TWUGC as follows.

TWUGC(X) = Z TotalU_GC(T}) 2)
XET]'/\TJ'ED
TotalU_GC(T;) = Z UTGC(i, T)). 3)
iET]'/\TjED
N TU(,T), if P_Val(i) > 0.
UTGC(i,T;) = {GC(L') x P_Val(i), if P_Val(i) < 0. @)

The TWUGC of itemset X is the sum of TotalU_GC (T]) in transactions, where item-
set X appears. TotalU_GC(T;) is calculated as the sum of utilities of items in transactions
T;. If the item is negative, the utility of the item is calculated as the product of GMC of the
item and the profit of the item. For the second pruning strategy, the RLC pruning strategy
prunes hopeless candidates. We utilized the utility list to calculate the overestimated util-
ity value of the relative utility of the itemset. For the third pruning strategy, the TIO prun-
ing strategy prunes the subtrees of the set-enumeration tree which do not appear in the
database during the mining process. We introduced the IO Bitmap which recorded the
occurrence statuses of all of the items.

3.4. Threshold Increased Strategies

We introduced two strategies with increased thresholds. The RPRU_Sizel strategy
was used to calculate the relative utility for all of the positive items in database D and
insert those positive items into the RPRU_Sizel_List. Then, the RPRU_Sizel strategy sorts
the RPRU_Sizel list according to the descending order of relative utilities and it increases
the threshold value to the k-highest relative utility in the RPRU_Sizel list. The RRU_Size2
strategy was used to calculate the relative utilities for all of the items in database D and
insert them into RRU_Size2 list. The RRU_Size2 strategy sorts the RRU_AIl_List according
to the descending order of relative utilities and it increases the threshold value to the k-
highest relative utility in the RRU_AII_List.

3.5. Mining Process

The mining process of the developed algorithm is as follows.
3.5.1. Preprocessing Step

In this step, we constructed TIList, TotalTI table, TIPN table, IO table, and NIMC table.
In addition, LMC and GCM were added. After scanning the database once, the algorithm
performed the RPRU-Sizel strategy to increase the value of ThreVal. To obtain the real
relative utility of positive item a, we calculated the utility of positive item a by using the
TIPN table. The results showed that UD(a) = 115 TI_Occu_List(a) = {1, 2, 3}, and
TI_Occu_Total(a) = 133. The real relative utility of item a is calculated as UD(a) /
TI_Occu_Total(a) = 0.86. The result of RPRU_Sizel list which stores real relative utilities
of positive items is [Each positive item, RPRU] = [[a, 0.86], [c, 0.54], [e, 0.17], [f, 0.09]]. If

14

15
16
17
18
19
20
21
22
23
24

25
26

27
28
29
30
31
32
33
34



Eng. Proc. 2025, x, x FOR PEER REVIEW 6 of 10

the size of RPRU Sizel list was not less than k, we increased the threshold value to the k-
highest value in RPRU_Sizel_List. On the other hand, TK_List stored the k-highest HOUlIs
by the descending order of the relative utility. Therefore, TK_List was updated by
RPRU_Sizel_List.

Then, we calculated the TWUGC value of all of the items in the database to overesti-
mate the relative utility. We defined a total order (TWUGC_Order) for finding the Top-k
HOUISs efficiently. TWUGC_Order has three ordering rules. First, positive items are
sorted by the descending order of TWUGC. Second, negative items are sorted by the de-
scending order of TWUGC. Third, negative items are sorted in positive items.
TWUGC_Order of database D2 is [f, a, e, ¢, b, d]. Table 5 shows the result of the sorted
TIPN table.

After the TIPN table was sorted by the TWUGC_Order, the developed algorithm cre-
ated a TIList for all of the single items in the database. The TIList of each item was used
for discovering itemsets with a large size by using the itemset expansion method.

Table 5. Sorting TIPN table in TWUGC

Time Interval | TID | Positive Items | Positive Utility | Negaitve Items Negative Count

T1 f f: 16 b, d b:3,d:2

1
T2 e C c:21,e:10 b, d b:2,d:4
Ts a,c a:30,¢: 9 d d:4

2
Ta a, e a:20,e:4 d d:2
Ts e C c:24,e:8 b,d b:3,d:5

3
Te C c:. 18 b,d b:1,d:3

To increase the minimum threshold value for finding Top-k HOUIs, the algorithm
applied another threshold-increased strategy called the RRU-Size2 strategy. In the RRU-
Size2 strategy, the real relative utility is calculated for each size 2 itemsets and stored in
the RRU_Size?2 list. Moreover, the algorithm uses the Time Interval_Utility list and I0_Ta-
ble to calculate the real relative utility of the size 2 itemset efficiently. For obtaining the
real relative utility of itemset xUy, we need to calculate the utility of itemset x Uy and the
total utility of each time Interval which contains the occurrence of itemset x U y. The real
relative utility of x Uy can be calculated as Relative(x Uy) = UD(x U y)/TI_Occu_Total(x U
y). The TK list is updated by the RRU_ALL list.

3.5.2. Mining Step

In the mining step, the algorithm applies the pattern growth method to discover Top-
k HOUIs. At the beginning of the mining process, the algorithm traverses through all of
the TIULs of items from the root node of the set- enumeration tree, i.e. empty itemset. In
each iteration, the original itemset P is appended with the current item x to obtain a new
itemset NewP = P U {x}. Then, the algorithm checks whether the new itemset NewP is an

O 0 N N O s W~

I T Sy
B W N R O

—_
a1

16

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31



Eng. Proc. 2025, x, x FOR PEER REVIEW 7 of 10

HOUI or not. If the relative utility of the itemset is not less than the threshold value
ThreVal, the itemset is a HOUL If the relative utility of the new itemset NewP is greater
than the k-highest relative utility in the TK list, the algorithm removes the k-highest item-
set and inserts the new itemset NewP into the TK list. Moreover, the threshold value
ThreV al is updated as the k-highest relative utility in the TK list. To calculate the relative
utility of new itemset NewP, we calculated the utility of new itemset NewP in the database
and the total utility of each time interval that contains the occurrence of the new itemset
in the database TI Occu_Total. For calculating the utility of new itemset NewP, the algo-
rithm uses TIUL of itemset NewP. The sum of positive utilities and negative utilities of
itemset NewP contains sumPN_Util(NewP ), which is the accumulation of positive utili-
ties sump_Util(NewP ), and the accumulation of negative utilities sumN_Util(NewP ).

If sumPN_Util(NewP) is less than 0, the algorithm skips it directly. For calculating
TI_Occu_Total, the algorithm performs the AND operation of all of the time intervals of
itemset NewP in IO_Bitmap. If the related utility of the new itemset NewP is not less than
the threshold value ThreV al, the new itemset NewP is a HOUI. The objective is to discover
the Top-k HOUIs within the database. Moreover, the algorithm creates a list called TK list
to store the Top-k HOUIs during the mining process. The TK list is a list that dynamically
sorts all of the HOUISs in the TK list according to the descending order of relative utilities.
If the size of the TK list is less than the user-defined parameter k, the algorithm inserts the
new itemset NewP into the TK list directly. If the size of the TK list is equal to the user-
defined parameter k, the algorithm checks whether the relative utility of new itemset
NewP is greater than the k- highest relative utility in the TK list or not. If the result is true,
the new itemset NewP is inserted into the TK list. After the above checking, whether the
new itemset NewP is HOUI or not, the algorithm applies the TWUGC pruning strategy
to prune unpromising itemsets.

4, Performace Evaluation

The TIPN-table-based algorithm and the KOSHU algorithm were evaluated for their
performance [4]. For evaluation, we utilized two databases, real and synthetic databases.

4.1. Performance Model

The real database is the sparse database downloaded from the SPMF library [5]. The
retail database has a density of lower than 1% as a sparse database. The value of the time
interval is 5, which is equal to the consideration of the KOSHU algorithm [4]. We set k to
the range between 50 and 150. The real database has 88162 transactions (containing 16470
items) with density=0.06. For the synthetic database, we utilized four parameters T, I, MI,
and NP to experiment with the TIPN-table-based algorithm and KOSHU algorithm,
where T represents the total amount of transactions in the database, I represents the total
amount of distinct items of the database. MI represents the maximum amount of distinct
items of a single transaction and NP represents the percentage of counts of items with
negative profits. For example, T_10000_I4000_MI10_NP_80 is a synthetic database with
10000 transactions, 4000 distinct items, up to 10 distinct items in a single transaction, and
80% of items with negative profits. These synthetic databases are obtained from the IBM
Almaden Quest research group [1].

4.2. Experiment Results

We compared the performance of the TIPN-table-based algorithm and the KOSHU
algorithm [4]. The KOSHU algorithm produced the EMPRS data structure during the pre-
processing step, which was time-consuming. Moreover, the number of candidates for the
TIPN-table-based algorithm is smaller than that of the KOSHU algorithm. There are two

O 0 N N O s W~

N N N N NN R = s =l =) = e e
O b= W N = © VW 0 N O U b= W N = O

26

27
28

29

30
31
32
33
34
35
36
37
38
39
40
41
42

43

44
45
46
47



Eng. Proc. 2025, x, x FOR PEER REVIEW 8 of 10

References

700
600
5500
g
g 400
2
E300
= 200
100

reasons why the algorithm could generate less number of candidates than the KOSHU
algorithm. First, the TWUGC pruning strategy considered the GMC of all of the items
with negative profits. Second, the RLC pruning strategy utilizes the LMC of all of the items
with negative profits at each time interval. Therefore, the remaining utility of the RLC
pruning strategy is tighter than that of the KOSHU algorithm. Moreover, the number of
candidates was pruned by the algorithm more than that of the KOSHU algorithm during
the mining process.

Figure 1 shows the comparisons of the performance between these two algorithms
by using the real database retail. As the value of k is increased, the performance measures
including the processing time and the number of candidates of our proposed algorithm
are better than those of the KOSHU algorithm. Moreover, the reasons for such results are
the same as those reasons described before. For the synthetic databases
T_10000_1100_MI10_NP_80 (the dense database), Figures 1(c) and (d) show the compari-
sons of the two concerned algorithms. The result are similar to the comparison between

the two algorithms.
80000

5 70000
;;: 60000
2 50000
< 40000
=}

50 75 100 125 150
k

—+—TIPN-Table-Based —<KOSHU

(@)

,,//

50 75 100 125 150
k

=+-TIPN-Table-Based KOSHU

(©)

0

5 30000
2

E 20000
“ 10000

50 75 100 125 150
k

—+-TIPN-Table-Based —-<KOSHU

9000
8000
3
§ 7000
2 6000
& 5000
5 4000
2 3000
€ 2000
1000

(b)

e *

50 75 100 125 150
k

—&-TIPN-Table-Based KOSHU

(d)

Figure 1. A comparison under the change of k. (a) The processing time by using the real database
retail. (b) The total amount of candidate by using the real database retail. (c) The processing time by
using the synthetic database T10000_1100_MI10_NP80by. (d) The total amount of candidate using
the synthetic database.

5. Conclusion

In this study, we developed the TIPN-table-based algorithm to mine top-k high on-
shelf utility itemsets efficiently. The TIPN-table-based algorithm only scans the database
once and sorts the database once. Moreover, we proposed the global and local concepts to
make the tight upper bound. We utilized a bit map strategy to decrease the processing
time. The experiment results showed that the TIPN-Table-Based algorithm better per-
formed than the KOSHU algorithm.

O 0 N N O s W~

e e e
g = W N =R O

16
17
18
19

20

21
22
23
24
25
26

27



Eng. Proc. 2025, x, x FOR PEER REVIEW 9 of 10

10.

IBM. IBM Quest Synthetic Data Generation Code. Available online: http://www.almaden.ibm.com/cs/quest/syndata.html (ac-
cessed on 5 July 2025).

Ashraf, M.; Abdelkader, T.; Rady, S.; Gharib, T.F. TKN: An efficient approach for discovering top-k high utility itemsets with
positive or negative profits. Inf. Sci. 2022, 587, 654—678.

Chen, J.; Guo, X.; Gan, W.; Chen, C.-M.; Ding, W.; Chen, G. On-shelf utility mining from transaction database. Eng. Appl. Artif.
Intell. 2022, 107, 1-12.

Dam, T.-L.; Li, K; Fournier-Viger, P.; Duong, Q.-H. An efficient algorithm for mining top-k on-shelf high utility itemsets. Knowl.
Inf. Syst. 2017, 52, 621-655.

Fournier-Viger, P.; Lin, CW.; Gomariz, A.; Gueniche, T.; Soltani, Z.D.A.; Lam, H.T. The SPMF open-source data mining library

version 2. In Proceedings of the 19th European Conference on Principles of Data Mining and Knowledge Discovery (PKDD 2016), Part
III; Springer: Riva del Garda, Italy, 19-23 September 2016; pp. 36—40.

Krishnamoorthy, S. Mining top-k high utility itemsets with effective threshold raising strategies. Expert Syst. Appl. 2019, 117,
148-165.

Lee, J.; Yun, U.; Lee, G; Yoon, E. Efficient incremental high utility pattern mining based on pre-large concept. Eng. Appl. Artif.
Intell. 2018, 72, 111-123.

Singh, K; Singh, S.S.; Kumar, A.; Biswas, B. TKEH: An efficient algorithm for mining top-k high utility itemsets. Appl. Intell.
2018, 49, 1078-1097.

Singh, K.; Kumar, A.; Singh, S.S.; Shakya, H.K.; Biswas, B. EHNL: An efficient algorithm for mining high utility itemsets with
negative utility value and length constraints. Inf. Sci. 2019, 484, 44-70.

Vo, B.; Bui, H,; Vo, T.; Le, T. Mining top-rank-k frequent weighted itemsets using WN-list structures and an early pruning
strategy. Knowl.-Based Syst. 2020, 201-202, 1-12.

O 0 N N O s W -

N NN R o= m = = =) s e
N P O O 0 N9 O UG k&= W N = O


http://www.almaden.ibm.com/cs/quest/syndata.html

Eng. Proc. 2025, x, x FOR PEER REVIEW 10 of 10

11.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of
the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s)
disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or
products referred to in the content.

N S R



